RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node.
نویسندگان
چکیده
Heart rate is controlled by the opposing activities of sympathetic and parasympathetic inputs to pacemaker myocytes in the sinoatrial node (SAN). Parasympathetic activity on nodal myocytes is mediated by acetylcholine-dependent stimulation of M(2) muscarinic receptors and activation of Galpha(i/o) signaling. Although regulators of G protein signaling (RGS) proteins are potent inhibitors of Galpha(i/o) signaling in many tissues, the RGS protein(s) that regulate parasympathetic tone in the SAN are unknown. Our results demonstrate that RGS4 mRNA levels are higher in the SAN compared to right atrium. Conscious freely moving RGS4-null mice showed increased bradycardic responses to parasympathetic agonists compared to wild-type animals. Moreover, anesthetized RGS4-null mice had lower baseline heart rates and greater heart rate increases following atropine administration. Retrograde-perfused hearts from RGS4-null mice showed enhanced negative chronotropic responses to carbachol, whereas SAN myocytes showed greater sensitivity to carbachol-mediated reduction in the action potential firing rate. Finally, RGS4-null SAN cells showed decreased levels of G protein-coupled inward rectifying potassium (GIRK) channel desensitization and altered modulation of acetylcholine-sensitive potassium current (I(KACh)) kinetics following carbachol stimulation. Taken together, our studies establish that RGS4 plays an important role in regulating sinus rhythm by inhibiting parasympathetic signaling and I(KACh) activity.
منابع مشابه
Controlling Parasympathetic Regulation of Heart Rate: A Gatekeeper Role for RGS Proteins in the Sinoatrial Node
Neurotransmitters released from sympathetic and parasympathetic nerve terminals in the sinoatrial node (SAN) exert their effects via G-protein-coupled receptors. Integration of these different G-protein signals within pacemaker cells of the SAN is critical for proper regulation of heart rate and function. For example, excessive parasympathetic signaling can be associated with sinus node dysfunc...
متن کاملRGS6, a modulator of parasympathetic activation in heart.
RATIONALE Parasympathetic regulation of heart rate is mediated by acetylcholine binding to G protein-coupled muscarinic M2 receptors, which activate heterotrimeric G(i/o) proteins to promote G protein-coupled inwardly rectifying K(+) (GIRK) channel activation. Regulator of G protein signaling (RGS) proteins, which function to inactivate G proteins, are indispensable for normal parasympathetic c...
متن کاملCellular Biology Short Communication RGS6, a Modulator of Parasympathetic Activation in Heart
Rationale: Parasympathetic regulation of heart rate is mediated by acetylcholine binding to G protein–coupled muscarinic M2 receptors, which activate heterotrimeric Gi/o proteins to promote G protein–coupled inwardly rectifying K (GIRK) channel activation. Regulator of G protein signaling (RGS) proteins, which function to inactivate G proteins, are indispensable for normal parasympathetic contr...
متن کاملRGS Proteins in Heart: Brakes on the Vagus
It has been nearly a century since Otto Loewi discovered that acetylcholine (ACh) release from the vagus produces bradycardia and reduced cardiac contractility. It is now known that parasympathetic control of the heart is mediated by ACh stimulation of G(i/o)-coupled muscarinic M2 receptors, which directly activate G protein-coupled inwardly rectifying potassium (GIRK) channels via Gβγ resultin...
متن کاملNitric oxide and cardiac muscarinic control in humans.
Cardiac parasympathetic activity reduces susceptibility to potentially lethal ventricular arrhythmias in heart failure and ischemic heart disease. This influence is mediated in large part by antagonism of the adverse cardiac effects of sympathetic overactivity ("indirect" parasympathetic activity) in addition to the "direct" effects of muscarinic stimulation. Nitric oxide modulates parasympathe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 103 5 شماره
صفحات -
تاریخ انتشار 2008